
Migrating from MySQL to Amazon SimpleDB

Migrating from MySQL to Amazon SimpleDB

Contents

Contents ... 2
Introduction .. 3
The Simple Customer Application ... 3
Reasons for Migrating .. 5
Migrating MySQL Schemas to Amazon SimpleDB .. 6
Migration from a CRUD Perspective .. 10

Creating or Inserting Data .. 11
Reading or Querying Data ... 14

Iterating through Results .. 16
Working with JOINs .. 18

Updating Data .. 19
Deleting Data ... 21

Additional Benefits of Migrating to Amazon SimpleDB .. 22
Conclusion .. 22
Appendix .. 23

Source Code ... 23
Amazon Machine Image .. 23
Migrating Simple Customer data ... 23

- 2 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Introduction

Amazon SimpleDB is a web service that provides core database functions like fast, real-

time lookup and querying of structured data. Amazon SimpleDB leverages Amazon’s

cloud infrastructure to offer developers a highly available, scalable, fault-tolerant data

store.

Many developers find Amazon SimpleDB to be a highly effective data storage solution

for building new web applications, since it automatically takes care of the many chores

associated with managing and scaling a database. Developers are not forced to worry

about data modeling (Amazon SimpleDB schemas are flexible), index maintenance and

performance tuning (both are done automatically), or data replication (also done

automatically).

Amazon SimpleDB can be an ideal solution for existing applications as well. Using an

implicitly scalable data storage solution like Amazon SimpleDB can often give new life

to existing applications. By using a cloud-based data storage solution, even monolithic

applications can be refactored–often greatly increasing their scalability, lowering

operating costs and significantly reducing time spent on database administration.

This document focuses on the migration scenario for existing applications. To help

illustrate this process, we use an existing application named Simple Customer

(http://www.simplecustomer.com) as an example, and use snippets of source code to

illustrate specific aspects of the migration process. We chose Simple Customer because it

is open source and relative simple. The entire application is available for further review

(see the Appendix for details).

The Simple Customer Application

Simple Customer is an open-source customer relationship management application that

was developed with PHP and MySQL. The Dashboard view is shown below:

- 3 -
August 2009

http://www.simplecustomer.com/

Migrating from MySQL to Amazon SimpleDB

Figure 1 - Simple Customer Dashboard

It utilizes an architecture typical for web applications: the application code is hosted on a
web server and the data is stored in MySQL. A high-level illustration of this architecture
is shown below. Depending on scalability and performance requirements, these
components may or may not reside on the same physical machines.

Figure 2 - Simple Customer high-level architecture

Fundamentally, this same basic architecture underlies many commercial software
products and services.

- 4 -
August 2009

Migrating from MySQL to Amazon SimpleDB

The simplicity of this sample application is ideal for illustrating concepts; and the
concepts examined in this document can be easily extrapolated for more complex, real-
world scenarios.

Reasons for Migrating

Keeping a traditional relational database management system (RDMS) running–even on a
small scale–is not a trivial undertaking. At a minimum, someone has to be responsible for
monitoring the database, capturing backups and applying updates. On a larger scale, it is
not unusual for a team to be assigned the responsibility of clustering and replicating a
database to ensure that it scales appropriately.

All of this requires a significant investment in financial and human resources. Moreover,
this investment must be made up front. Operational teams must be hired and hardware
capacity must be purchased to satisfy the forecasted demand. The implicit inaccuracy of
forecasting forces cautious organizations to overbuy capacity and over allocate resources.

However, almost any software application must be able to store and query for data, so the
difficulties involved with operating an RDMS are inherent–something organizations
traditionally have had to endure. Often, this financial and organizational overhead comes
at the expense of innovation–and ultimately of creating more value for the customer.

Amazon SimpleDB is a hosted cloud-based web service that offers an alternative to
traditional relational databases. This service takes a streamlined approach and provides
just the core functionality needed to store and query data–all of the complex and obscure
operations frequently found in a traditional database system are gone.

By virtue of its being XML-based, data can be rapidly stored–and easily retrieved or
edited–through a simple set of web service API calls using any modern programming
language and platform.

Your database resides in the Amazon Web Services cloud, so the complexity and expense
of maintaining an in-house solution is eliminated. This enables you to focus on your
unique, value-added application development, rather than on commoditized, tedious
database administration.

By virtue of Amazon’s cloud, Amazon SimpleDB automatically scales upward and
downward to meet your incoming traffic; your requests are always served with a
predictable level of performance.

Amazon SimpleDB utilizes the full spectrum of Amazon’s high-availability data centers,
so data stored in Amazon SimpleDB is geographically dispersed and automatically
replicated, ensuring the availability and durability of your data.

Amazon SimpleDB provides highly flexible support for your current and future
application development efforts.

- 5 -
August 2009

Migrating from MySQL to Amazon SimpleDB

In a traditional relational database, the smallest schema change can cascade across many
aspects of your software development effort. With Amazon SimpleDB, you have a much
more flexible and extensible attribute-based system. Even when attributes change, the
system automatically indexes your data accordingly. This is because Amazon SimpleDB
does not require predefined schemas.

The ability to store structured data without first defining a schema eliminates the need to
refactor your database as your applications evolve.

Lastly, as with all of the Amazon Web Services products, you only pay for what you use.
This frees you from many of the complexities of safety-net capacity planning, transforms
large capital expenditures into much smaller operating costs and eliminates the need to
overbuy capacity to handle periodic traffic spikes.

Migrating MySQL Schemas to Amazon SimpleDB

The schema that the original MySQL-driven version of Simple Customer uses is
relatively simple; it comprises four tables, three of which are related using foreign keys.
This schema is illustrated below.

- 6 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 3 - Simple Customer Data Model

When porting the application backend from MySQL to Amazon SimpleDB, our primary
concern is data integrity. Amazon SimpleDB does not enforce the use of schemas, and
this makes data migration relatively simple.

The conceptual framework of Amazon SimpleDB data storage is intentionally
streamlined and easy to learn:

• Domains help you organize your data.
• Items represent your data represented.
• Attributes are name-value pairs associated with items.

You query for items that match certain attribute values.

These concepts can be roughly matched to concepts in relational databases as illustrated
in the following table.

- 7 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Amazon SimpleDB Traditional Relational Database
Domain Table
Item Row in a table
Attribute Column value in a row

The use of domains and the schema-less nature of Amazon SimpleDB becomes apparent
if you compare the source code for a MySQL-driven version of Simple Customer with an
Amazon SimpleDB-driven version of Simple Customer.

Below is a snippet of source code from the install.php file in the original MySQL
version of Simple Customer:

Figure 4 – Install.php

- 8 -
August 2009

Migrating from MySQL to Amazon SimpleDB

These statements are used to create the MySQL tables illustrated previously in Figure 3;
the column names and data types define the type of data these tables will store.

Any changes to the stored data necessitates changes to this code as well. Often ancillary
software packages are used to keep schema conceptual changes synchronized with the
source code.

The schema-less model underlying Amazon SimpleDB provides much more extensibility.
For example, storing additional user-specified fields for a customer contact is trivial. You
simply write application code to store additional attributes for each applicable item; there
is no change needed to installation or deployment, and there is no possibility of breaking
existing functionality.

Below is a snippet of source code from the Amazon SimpleDB-driven version of Simple
Customer.

Figure 5 – Amazon SimpleDB code for Simple Customer

The only “installation” needed is to create the domains. The structure of the domains will
be determined by the data that they will store. The operation to create a domain is
idempotent, so there is no need for any additional logic to check whether the domain
already exists.

In this example, a domain is created to match each table. But, because of the flexible
nature of Amazon SimpleDB, it is entirely possible to use a single domain to store all of
the data for this application. We have merely matched the number of domains and tables
to clarify the example.

What may not have been immediately apparent in the two snippets of source code is that
the way to programmatically access Amazon SimpleDB versus MySQL is quite different.

In order to access MySQL from a programming language like PHP, you need a driver.
The driver acts as the interface between a high-level programming language like PHP, C#
or Java, and the network protocol that MySQL understands.

- 9 -
August 2009

Migrating from MySQL to Amazon SimpleDB

MySQL is an extremely popular relational database management system, so there are
drivers available for nearly every platform. Almost all default installations of PHP
provide a preconfigured MySQL driver.

However, the need for a driver increases the complexity of the overall configuration.
Also, ports need to be configured (port 3306 by default in this case) to permit MySQL
network traffic. Again, although this is a simple and common procedure, it does add to
the overall configuration taxonomy.

From a programmatic standpoint, Amazon SimpleDB is just a simple web service; it
receives requests via HTTP (or HTTPS) and returns XML as a response. No special
software or drivers are needed to interact with Amazon SimpleDB. This is a subtle, yet
important benefit.

Database drivers are often a source of complexity and error during software deployment.
It is not uncommon to accidentally use different versions of a database driver in the
development and production environments. This simple mistake can introduce difficult-
to-reproduce errors into your application—complicating your debugging efforts.

With Amazon SimpleDB, this complexity and risk is eliminated because you are simply
using a web service API.

Sending HTTP requests and parsing the XML response is a simple operation for most
programming languages, but it can be somewhat tedious.

For the sake of convenience, it is common to use libraries that offer predefined, language-
specific wrappers for the Amazon SimpleDB operations. The wrapper is essentially a thin
layer of software that performs the HTTP invocations and subsequent XML parsing.

Amazon Web Services has a large and vibrant developer community. The open source
wrapper used for the Amazon SimpleDB-driven version of Simple Customer
(http://sourceforge.net/projects/php-sdb/) was produced within this community.

It is important to emphasize that this particular example uses PHP/MySQL, but Amazon
SimpleDB–and the rest of the Amazon Web Services–is completely platform agnostic.
Any platform or language that can send HTTP requests and process XML responses can
use the Amazon Web Services.

Migration from a CRUD Perspective

Migrating from MySQL to Amazon SimpleDB requires subtle changes in how data is
created, read, updated and deleted; this series of activities is commonly referred to with
the acronym CRUD.

- 10 -
August 2009

http://sourceforge.net/projects/php-sdb/

Migrating from MySQL to Amazon SimpleDB

Creating or Inserting Data
The data stored in Amazon SimpleDB is represented as items and these items have
attributes, which define their value. From a RDMS perspective, items and attributes are
roughly analogous to the rows and columns in a table, respectively.

In the Simple Customer application, you create new customer contacts by entering data in
fields to complete a form as illustrated below:

Figure 6 - Creating a new contact

The fields from this form are used to create each new contact. In the original MySQL-
driven version of Simple Customer, these fields are used to create an INSERT statement.
The following source code is from the contact.php source file.

- 11 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 7 - INSERT SQL Statement

The Amazon SimpleDB approach is somewhat similar; attributes are used to represent the
fields we are storing for the customer contact.

Based on the domain and attributes specified, the invocation of the putAttributes
operation actually stores the data in Amazon SimpleDB.

- 12 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 8 - PutAttributes in Amazon SimpleDB

Amazon SimpleDB attributes are a simple, yet very powerful concept. The replace
parameter in the definition of an attribute determines whether the incoming value updates
an existing value or not. Since this is an insert operation, the replace value is set to false.

The last line of the code snippet actually stores the contact into Amazon SimpleDB by
invoking the putAttributes API.

Notice that putAttributes accepts three parameters: a domain name, an item name and
the attributes. The item name is specified by the $id parameter, and it illustrates a unique
characteristic of Amazon SimpleDB.

In a traditional relational database, each row that is inserted into a table is assigned a
unique identifier (usually a numeric value). This sounds like an innocuous operation, but
it has a negative impact on scalability. The RDMS has to ensure that each incoming row
gets a unique value. This becomes difficult when rows are being inserted in parallel.
Typically, locking algorithms are used to ensure that duplicate identifiers are not given
out; but any kind of locking, no matter how small, negatively impacts scalability.

Amazon SimpleDB chooses a much simpler approach. By shifting the responsibility of
creating a unique identifier to the application code, the creation of a unique value is a
trivial operation for any programming language. In this example, we can use the intrinsic
PHP function uniqid to generate a unique identifier.

Figure 9 – uniquid function

- 13 -
August 2009

Migrating from MySQL to Amazon SimpleDB

For the purpose of this simple example, the uniqueness that this function guarantees is
suitable. For more stringent applications, you could use a UUID instead.

When you are migrating existing data from a relational database to Amazon SimpleDB, it
is common to simply reuse the identifier that was generated for you. This is a common
approach when migrating existing data to Amazon SimpleDB (as illustrated in the
Appendix). Reuse will likely result in different patterns for your identifiers, but this is
merely cosmetic. Amazon SimpleDB simply requires a unique identifier for each item
you store. It is immaterial whether that identifier follows a pattern or not.

By shifting the responsibility for uniquely identifying data, Amazon SimpleDB can
provide scalability efficiently. The tradeoff is negligible, because generating a unique
value is a trivial procedure for nearly all programming languages.

Reading or Querying Data
Like any reasonably sized application, Simple Customer needs relatively complex SQL
queries to implement its features. The query illustrated below searches for contacts:

Figure 10 - SQL to search for contacts

Amazon SimpleDB employs a SQL-like query syntax, so in many cases, exactly the same
SQL phrasing is used to query both MySQL and Amazon SimpleDB.

Thus, for Simple Customer, we used the relatively complex SQL illustrated in Figure 10
as-is for Amazon SimpleDB. This greatly reduced the effort needed to perform the
migration.

Amazon SimpleDB imposes, however, a few minor requirements on the dialect of SQL
that it understands. The most obvious is how ordering is specified. A snippet of the source
code that builds the SQL ordering clauses in the original version of Simple Customer is
listed below. This code was taken from the contacts.php file:

- 14 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 11 – Ordering clauses

Amazon SimpleDB understands the ORDER BY clause, but it needs to specify the
attribute being ordered in the WHERE clause as well. The solution is to simply add a
WHERE clause for this attribute that always evaluates to true—as in the following
example.

Figure 12 - Amazon SimpleDB ordering

- 15 -
August 2009

Migrating from MySQL to Amazon SimpleDB

This simple addition allows us to reuse the rest of the SQL with Amazon SimpleDB.

Iterating through Results
MySQL and Amazon SimpleDB return results from querying in different ways. Typically,
when using MySQL, it is common to retrieve the results from a query one row at a time.

The source code listed below is from the contacts.php file of the original version of
Simple Customer.

One row of results–one customer contact in this case–is retrieved each time through this
loop. The call to the mysql_fetch_assoc method retrieves the next set of results.

Figure 13 - Iterating through MySQL results

Amazon SimpleDB returns the results of a query differently, so small changes in
interpreting those results are required.

Amazon SimpleDB returns the complete set of results1 from the SELECT operation. In
the following code snippet, all of the results from the query are contained in the
$query_contacts variable.

Figure 14 - Results from Amazon SimpleDB

1Amazon SimpleDB limits the response to a SELECT operation to 1 MB in size. If the response is larger
than 1 MB, the response will also include a token. This token can be passed to additional requests to
retrieve the rest of the data. This is similar to the paging functionality that many database drivers provide.
In the Simple Customer case, for the sake of simplicity the assumption was made that the results would not
exceed this limit.

- 16 -
August 2009

Migrating from MySQL to Amazon SimpleDB

The format of the XML response is formally defined by its WSDL
(http://sdb.amazonaws.com/doc/2009-04-15/AmazonSimpleDB.wsdl).

An informal example of how the response is structured follows.

Figure 15 – Sample response

It is up to the wrapper to decide how these XML results are deserialized, but most
wrappers, including the one used in this case, choose a dictionary or hash table structure
to store the results.

More specifically, the $row_contacts variable is a list of dictionaries, with each
dictionary representing a customer contact and its attributes. The code below illustrates
how to index the results returned by Amazon SimpleDB to display the email addresses of
each customer contact.

- 17 -
August 2009

http://sdb.amazonaws.com/doc/2009-04-15/AmazonSimpleDB.wsdl

Migrating from MySQL to Amazon SimpleDB

Figure 16 - Indexing into Amazon SimpleDB results

The HTML formatting from the original Simple Customer was preserved during the
migration; the only material changes made were in how the results were accessed.

Working with JOINs
As illustrated earlier in Figure 3, the original MySQL-driven Simple Customer schema
uses a foreign-key relationship between the contacts, notes, and history tables.

There is no concept of a JOIN in Amazon SimpleDB. This is done in order to increase the
scalability and performance of SimpleDB. However, if your existing MySQL application
uses JOINs, determining how to accommodate this difference requires some thought
during migration.

In many cases, the use of multi-value attributes is enough to enable the scenarios where a
JOIN is usually used. The data you normally would store in a related table could be de-
normalized into multiple values in a single attribute. However, in the Simple Customer
case, a tuple of data is kept for each note and history that is associated with a contact, so
denormalizing with multi-value attributes is not practical. For our Simple Customer
migration, we simply write application code to simulate the JOIN operation.

In the MySQL-driven version of Simple Customer, a JOIN query returns a list of the
notes being stored and their associated customer information.

Figure 17 - JOIN contacts and notes

In the Amazon SimpleDB-driven version, an additional query is needed to retrieve the
customer contact information associated with a given note as illustrated below.

- 18 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 18 - Simulating a JOIN

In this example, instead of a SELECT query, the getAttributes operation is used to
retrieve the attributes of an item. Since the item name ($contact_id) is known, it is
possible to directly access its data using getAttributes. This is more efficient than using a
query operation.

One of the components of the pricing model for Amazon SimpleDB is the amount of time
it takes to process your requests, so there is a financial benefit to using Amazon
SimpleDB efficiently.

Whenever you know the item name, you can save time by using getAttributes to retrieve
the attributes for that data.

Updating Data
Data in Amazon SimpleDB is created and updated with the putAttributes2 operation.
The dual use of this operation is relatively unique compared to the usual update pattern
with a traditional RDMS.

The most interesting application of the putAttributes operation is in the context of the
import feature in Simple Customer. The data imported could represent new customer
contacts, or updates to existing customer contacts, so the Simple Customer application
must decide whether to insert or update data.

2Multiple items can be created or updated using the BatchPutAttributes operation. This operation is
conceptually the same as putAttributes; it just works on up to 25 items (a batch) rather than on an
individual level.

- 19 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 19 - Importing contacts

The following code (abbreviated for clarity) is located in the batch.php source file of the
original Simple Customer application.

Figure 20 - MySQL update pattern

This pattern is common when using a traditional RDMS like MySQL. A query is first
executed to determine if the data given represents an existing item or not. The most
efficient way to execute this query is to specify that only the number of results should be
returned. If the number of results is 0, then the data indicates that a new customer contact
should be inserted. Otherwise, the data should be used to update an existing customer
contact.

Amazon SimpleDB makes this type of logic much simpler. The putAttributes operation
requires a domain name, an item name and a set of attributes as its parameters. If the item
name already exists in the domain, then the attributes are used to update the existing item.
Otherwise, the item is inserted into the domain. The replace flag specified for each
attribute enables you to further define how to treat the incoming data. If the replace flag
is false, then new data will be appended to existing data; if the replace flag is true,
then the new data will replace the existing data.

The logic structure from the original MySQL-driven Simple Customer is replaced with a
single invocation of the putAttributes operation—Amazon SimpleDB does the work
necessary to determine if this is an update or insertion.

- 20 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 21 - Insert or update data

Deleting Data
Amazon SimpleDB uses the deleteAttributes operation to update or delete items. Items
in a domain do not have to share the same set of attributes, so you can invoke
deleteAttributes to remove attributes for individual items.

If deleteAttributes is specified with no attributes, or if an item is left with no attributes,
then that item is deleted completely. Unlike putAttributes, there is no batch operation
for deleteAttributes. Each item must be deleted individually. In some cases, where mass
deletions of data are common, it is more efficient to simply delete and re-create the
domain.

These semantics are quite different than what MySQL offers and must be taken into
account during a migration. We can illustrate this difference by the way customer
contacts are deleted from Simple Customer.

In the original MySQL-driven version, the DELETE operation is used to delete the
contact fields, notes and history for a given customer contact. This is a very simple
operation.

The snippet of source code illustrated below is taken from the delete.php file.

Figure 22 - DELETE operation

Application code must be written for the Amazon SimpleDB-driven version of Simple
Customer, and items must be deleted individually from the contacts, notes and history
domains.

- 21 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Figure 23 - Deleting items from Amazon SimpleDB

Additional Benefits of Migrating to Amazon SimpleDB

Hopefully this document has made it easier to plan the migration of your application to
Amazon SimpleDB and illuminated some of the unique considerations that arise when
using the service.

Migrating to Amazon SimpleDB has a number of benefits in addition to those
enumerated earlier in this document. For instance, Amazon SimpleDB is always
referenced the same way–it does not matter if the web application aspect to Simple
Customer resides in a local datacenter, in Amazon Web Service, or in another hosting
provider. As long as there is Internet access, the web application can communicate with
Amazon SimpleDB.

Conclusion

Amazon SimpleDB does not duplicate every feature found in a traditional RDMS like
MySQL, but there are significant benefits in terms of availability, reliability, and
scalability.

In order to avoid the performance bottlenecks that often accompany centralized
databases, Amazon SimpleDB focuses on delivering only the core functionality needed
for storing and working with structured data, while ensuring dynamic scalability at low
cost.

When complete, the work involved in migrating your data store from MySQL to Amazon
SimpleDB will also allow you to enjoy the benefits of a highly available managed
service. With data modeling, index maintenance, redundancy and performance tuning
taken care of, you can place your focus squarely on application development.

- 22 -
August 2009

Migrating from MySQL to Amazon SimpleDB

Appendix

Source Code
The source code for this application is hosted at: http://code.google.com/p/sdb-simple-
customer/

Updates will be made to this location periodically.

Amazon Machine Image
This application is also available in Amazon EC2 as an AMI (ami-e14aab88).

This AMI expects to receive an Amazon access key id and secret through the launch user
data in the following format:

<your key>***<your secret>

Once the instance is running, request the install.php page to create the necessary
Amazon SimpleDB domains.

Migrating Simple Customer data
The Simple Customer application has a feature to export existing data into a comma
separated values (CVS) file format. This can be done using the Export link, which is
found on the Contacts tab of the application.

Figure 24 – Contacts tab

The CSV file format is ideal because it is typically easy to parse. In general, most
MySQL administration utilities have a way to export a database to a CSV or similar file
format.

The code necessary to parse the CSV format from Simple Customer is relatively generic;
the PHP intrinsic function explode is used to parse each comma separate value.

The code shown below omits error-checking for the sake of brevity.

- 23 -
August 2009

http://code.google.com/p/sdb-simple-customer/
http://code.google.com/p/sdb-simple-customer/

Migrating from MySQL to Amazon SimpleDB

Figure 25 - Parsing CSV

Once the contact values have been extracted, migrating the data over to Amazon
SimpleDB is simply a matter of invoking the putAttributes API function.

Figure 26 - Migrating data

The migration code is so simple because Amazon SimpleDB uses a unified type system,
i.e. all data is stored as strings. Whatever format that MySQL chose to export your data
will be retained in Amazon SimpleDB. This makes your migration easier because it
minimizes application logic changes.

- 24 -
August 2009

	Contents
	Introduction
	The Simple Customer Application
	Reasons for Migrating
	Migrating MySQL Schemas to Amazon SimpleDB
	Migration from a CRUD Perspective
	Creating or Inserting Data
	Reading or Querying Data
	Iterating through Results
	Working with JOINs

	Updating Data
	Deleting Data

	Additional Benefits of Migrating to Amazon SimpleDB
	Conclusion
	Appendix
	Source Code
	Amazon Machine Image
	Migrating Simple Customer data

